Stoich with Moles

How do we determine amounts of reactants and products in moles?

What does an equation represent?
aluminum oxide
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
Draw a representation of particles:

AI

(A)

4 Al atoms $+3 \mathrm{O}_{2}$ molecules yield 2 molecules of $\mathrm{Al}_{2} \mathrm{O}_{3}$ Or 4 Al moles $+3 \mathrm{O}_{2}$ moles yield 2 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$
coefficients do not mean mass

Use moles to determine mass
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
4 mol Al@27g/mol $3 \mathrm{~mol} \mathrm{O}_{2} @ 32 \mathrm{~g} / \mathrm{mol}$
$108 \mathrm{~g}+96 \mathrm{~g} \quad=\quad 204 \mathrm{~g}$

Law of Conservation of Mass
Mass is never created or destroyed

Page 21, 1-3

1.

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

| 3.050 mol 7.00 mol
S
Determine limiting reactant/excess reactant

$$
\begin{array}{l|l}
3.050 \mathrm{~mol}_{2} \mathrm{H}_{6} & \mathrm{CO}_{2} \\
& \mathrm{C}_{2} \mathrm{H}_{6}
\end{array}=\mathrm{molCO} 2
$$

Determine proportions from limiting reactant

$$
\begin{array}{l|l}
7.00 \mathrm{molO}_{2} & \mathrm{C}_{2} \mathrm{H}_{6} \\
\hline & \mathrm{O}_{2} \\
& \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \\
7.00 \mathrm{molO}_{2} & \mathrm{H}_{2} \mathrm{O} \\
\hline & \mathrm{O}_{2}
\end{array}=\begin{aligned}
& \mathrm{mol} \mathrm{H}
\end{aligned} 2 \mathrm{O}
$$

$\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}+\mathrm{Cl}_{2}$

How many moles of calcium metal are produced from the decomposition of 8 mol of calcium chloride?

How many moles of chlorine gas are produced from the decomposition of 8 mol of calcium chloride?

How do we use moles to determine reactants and product?

What 2 factors indicate Limiting Reactant
 1. quantity of reactant
 2. the rate that the reactant is used up

How do you figure out limiting reactant?
Start with known quantities of each reactant
Calculate amount of product each can make
the smaller amount of product is the max amount of product and indicates the LR

If you start with 8 mol Sb and $9 \mathrm{~mol} \mathrm{Cl}_{2}$, how much product can be made? What is the limiting reactant and excess reactant (amount)?

$2 \mathrm{Sb}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{SbCl}_{3}$

How many moles of SbCl_{3} are produced from 7.5 moles of Cl_{2} and excess Sb?
How many moles of SbCl_{3} are produced from 5 moles of antimony and excess Cl_{2} ?
How many moles of chlorine gas are required to react with 5 moles of antimony?

What 2 factors indicate Limiting Reactant

1. quantity of reactant

2. the rate that the reactant is used up

How do you figure out limiting reactant?
Start with known quantities of each reactant
Calculate amount of product each can make
the smaller amount of product is the max amount of product and indicates the LR

$2 \mathrm{Sb}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{SbCl}_{3}$

How many moles of chlorine gas are required to react with 5 moles of antimony?

How many moles of SbCl_{3} are produced from 5 moles of antimony and excess Cl_{2} ?

How many moles of SbCl_{3} are produced from 7.5 moles of Cl_{2} and excess Sb?

If 4.6 moles of KCl are available to react with 12.4 mol O_{2}, how much product can be made? Which reactant is limiting and which is in excess?

$$
2 \mathrm{KCl}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{KClO}_{3}
$$

Practice:

1 mole $=6.022 \times 10^{23}$ particles (atoms, molecules, ions

1. Convert 22 moles $\mathrm{C}_{3} \mathrm{H}_{8}$ to number of molecules .
2. Convert $1.1 \times 10^{24} \mathrm{H}_{2} \mathrm{O}$ to moles
3. LImiting Reactant? Excess Reactant? Amount of product?

$\ldots \mathrm{KCl}+\ldots \mathrm{Mg}\left(\mathrm{NO}_{3}\right) \longrightarrow \ldots \mathrm{KNO}_{3}{ }^{+}$_ MgCl_{2}
 | $0.026 \mathrm{~mol} \quad 0.062 \mathrm{~mol}$

S
E

mole stoich

$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
s
E

Review

1. What is the first thing you must do in any stoichiometry problem?
2. How do you figure out the limiting reagent?
3. Once you have the limiting reagent, how do you find the rest of the stoichiometric proportions for the other (excess) reactant and the products?

$$
1 \text { mole }=6.022 \times 10^{23} \text { particles (atoms, molecules, ions) }
$$

4. Convert 5.3 moles SO_{4}^{-2} to number of ions.
5. Convert $4.7 \times 10^{25} \mathrm{Al}$ atoms to moles
